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Introduction: The Almahata Sitta (hereafter 

“AHS”) meteorite was derived from an impact of as-
teroid 2008TC3 on Earth and is classified as an anoma-
lous polymict ureilite [1]. More than 600 meteorite 
fragments have been recovered from the strewnfield 
[2]. Previous reports indicate that these fragments con-
sist mainly of ureilitic materials with textures and 
compositions, while some fragments are found to be 
chondrites of a wide range of chemical classes [3-4]. 
Bulk oxygen three isotope analyses of ureilitic frag-
ments from AHS [4-5] fall close to the CCAM (Carbo-
naceous Chondrite Anhydrous Mineral) line [6] similar 
to ureilites [7-8]. In order to further compare AHS with 
known ureilites, we performed high precision SIMS 
(Secondary Ion Mass Spectrometer) oxygen isotope 
analyses of some AHS samples. 

Samples and Methods:  We analyzed sections of 
five samples consisting of coarse-grained ureilitic li-
thologies (AHS #15, #36, #44, #51, #54) and one H 
chondrite (#25). Some of the sections were used in our 
previous studies [3, 9-10]. Sections of AHS #15, #25, 
#44 and #54 are from single chips (several mm), while 
AHS #36 and #51 consist of small ~mm to sub-mm 
sized fragments. We examined each sample using 
SEM. Major element compositions of olivine and py-
roxene were obtained for ureilitic samples using 
EPMA. AHS #15 is augite-bearing ureilite that con-
tains melt inclusions and is very similar to Hughes 009 
[11]. The Mg# (=molar [Mg]/[Mg+Fe] %) of olivine 
and pyroxene are ~88. Twenty grains of AHS #36 are 
mostly monomineralic grains of olivine (Fo90), low-Ca 
pyroxene (En87Wo5), and pigeonite (En82Wo9). AHS 
#44 is an olivine-pigeonite (Fo79, En72Wo11) ureilite 
with shock-melted pyroxene rims (Fig. 1). Three mm-
sized grains of AHS #51 are also monomineralic, in-
cluding olivine (Fo90) and pigeonite (En82Wo9). AHS 
#54 is augite bearing and has the most Mg-rich core 
compositions (Mg#~95) among samples we analyzed. 

The SIMS oxygen isotope analyses were carried 
out using IMS-1280 at University of Wisconsin 
(WiscSIMS) using the methods similar to [12]. We 
used a Cs+ ion beam with ~15!m diameter and ~5nA 
intensity. The external reproducibilities of "18O, "17O 
and #17O ("17O-0.52$"18O) of San Carlos olivine 
standard were ~0.5‰, ~0.4‰, and ~0.4‰, respective-
ly. Multiple olivine and pyroxene standards were ana-
lyzed for matrix correction. We obtained 7-18 spot 
analyses on olivine and pyroxene for each sample.  

 
Fig. 1. AHS #44 oli-
vine-pigeonite 
ureilite with coarse-
grained texture. Red 
arrows indicate the 
positions of SIMS 
analyses. 

 
Results and Discussion: Oxygen isotope ratios of 

olivine and pyroxene in five ureilitic samples are inter-
nally homogeneous within analytical uncertainties. The 
shock melted pyroxene and reduced olivine rim anal-
yses from #44 do not show measurable difference from 
those of olivine and pyroxene core. The average oxy-
gen isotope ratios of multiple analyses in each sample 
(Fig. 2) plot on the CCAM line within analytical un-
certainties. These data are consistent with SIMS anal-
yses of ureilitic clasts in polymict ureilites [13-14].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Oxygen three isotope ratios of ureilitic lithologies 
from the AHS samples. Smaller filled symbols are analyses of 
bulk chips of the same AHS fragments by [5]. Gray circles 
(smallest) are data from [4-5] for other AHS stones. 

 
Our data are generally consistent with the corre-

sponding bulk data by [5], except for AHS #36 (SIMS 
analyses of 18 grains in this fragment were indistin-
guishable within analytical uncertainties). For other 
samples, the SIMS "18O values are slightly higher than 
bulk data by 0.5-1 ‰ along the mass fractionation 
trend. A similar difference in "18O was reported for 
ALHA 77257 between the SIMS analyses of [13] and 
the bulk analyses of [8], possibly due to contamination 
by Antarctic ice with low "18O. In contrast, terrestrial 



weathering is not significant for AHS fragments [3-
4,10] and does not explain the systematic difference in 
"18O values between the two methods. 

Data for four ureilitic fragments (except for AHS 
#15) show a negative correlation between Mg# and 
#17O values (Fig. 3), as observed previously from the 
SIMS analyses of ureilitic clasts in polymict ureilites 
[13-14]. The #17O values of bulk ureilites also show a 
similar tendency, though data show a significant scat-
ter [7]. Similarly, bulk analyses of different stones of 
AHS show a large scatter [5]. Data from AHS #15 plot 
off the trend and are consistent with those in Hughes 
009 (Mg#=87.3 [11], #17O=%1.05‰ [8]). These sam-
ples contain melt inclusions indicating that they crys-
tallized from magma in the ureilite parent body (UPB). 
It is possible that UPB mantle formed as solid residues 
and initially had correlated Mg# and #17O as shown in 
Fig. 3. AHS #15 and Hughes 009 might have formed 
in a large volume of magma that was created in the 
UPB with #17O= %1‰, in which Mg# evolved by ig-
neous fractionation.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Correlation between Mg# and !17O of ureilitic sam-
ples from AHS. Red squares are data from this work. Open 
blue circles are bulk analyses of the same stones by [5] plot-
ted against Mg# from this work. Bulk analyses of other AHS 
stones with ureilitic lithologies are shown as filled blue cir-
cles [5] and filled green circles [4].  
 

Chondritic sample: Analyses of olivine and pyrox-
ene from multiple chondrule phenocrysts and matrix 
minerals in AHS #25 show resolvable variations in the 
oxygen three isotope ratios. Data from a large fragment 
(~1mm) of a radial pyroxene (RP) chondrule and a 
porphyritic olivine (PO) chondrule (Fig. 4a-b) are dif-
ferent from the average value of four other analyses 
(Fig. 4c). It is possible that phenocrysts of chondrules 
preserved primary oxygen isotope variations, similar to 
those found in type 3 ordinary chondrites [11]. The 
average #17O =0.65±0.17 ‰ is obtained from the four 
homogeneous data, which is within the range of H 
chondrites. Other types of chondritic materials have 
been identified from AHS, including E, L, and R 

chondrite-like samples [3-4]. These observations are 
similar to those reported for polymict ureilites [14-16]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. AHS #25. (a-b) BSE image of chondrules. Red arrows 
indicate positions of SIMS analyses. (c) Oxygen isotope rati-
os of AHS #25 (open blue squares). Bulk chips by [5] and 
SIMS analyses of other AHS samples are shown as filled blue 
circles and filled red squares, respectively. 
 

Conclusions: The SIMS oxygen three isotope 
analyses of Almahata Sitta meteorite indicate that indi-
vidual fragments are internally homogeneous, like 
fragments of main group ureilites. The systematic 
trend in Mg#- #17O from ureilitic samples and obser-
vation of various types of chondritic materials are very 
similar to those observed for polymict ureilites. Thus, 
the Almahata Sitta ureilite seems to carry source mate-
rials common to other known ureilitic meteorites. 
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